

Introduction

This supplement is composed of presentations at the Ninth Annual International Conference on Lyme Borreliosis and Other Tick-borne Diseases held on 19–20 April 1996 in Boston. This conference, which was sponsored by the Lyme Disease Foundation in Hartford, Connecticut, focused on "Chronic Lyme Disease: Basic and Clinical Approaches." The conference was divided into sessions on animal models, pathogenesis, laboratory confirmation, and prevention and treatment of chronic Lyme disease as well as a session on emerging tick-borne diseases. The term "chronic Lyme disease" is used to describe the long-term, frequently ongoing symptoms and sequelae of infection with *Borrelia burgdorferi*. Patients with chronic Lyme disease may manifest objective findings (e.g., arthritis) but more commonly have subjective symptoms of encephalopathy, peripheral and radicular neuropathy, arthralgias or myalgias, and fatigue.

Investigators attempting to identify suitable animal models for Lyme disease have made significant advances within the past several years. Rabbits, hamsters, mice, and monkeys currently serve as models for specific aspects of this multisystemic disease. Stephen Barthold (Yale University) reviewed his investigations with use of the mouse model. This model is unparalleled by any other animal model because of the availability of numerous inbred strains with defined genetics and different susceptibilities to Lyme disease.

Several presentations focused on the mechanisms that may be involved in the persistence of *B. burgdorferi* infection. Janis Weis (University of Utah) associated tissue invasion with persistence of infection and used tissue levels of spirochetal DNA to explain clinical differences between two inbred species of mice. David Dorward (National Institutes of Health [NIH], Rocky Mountain Laboratories) detailed the interactions of *B. burgdorferi* and human B and T lymphocytes in vitro. He stated that spirochetes can invade the lymphocytes and emerge surrounded by host cell membrane, suggesting a possible mechanism to avoid recognition. Elizabeth Abarer (University of Graz, Austria) examined the persistence of *Borrelia* organisms in chronic skin lesions and determined that Langerhans' cells are heavily damaged; she suggested that this finding might explain a patient's impaired capacity to eliminate *B. burgdorferi* from skin sites.

Various serological tests and the role of humoral immunity in preventing chronic disease were examined in two presentations.

Reprints or correspondence: Dr. Edward M. Bosler, Division of Infectious Diseases, Department of Medicine, HSC-T15-080, SUNY at Stony Brook, Stony Brook, New York 11794-8153.

Clinical Infectious Diseases 1997;25(Suppl 1):S1
 © 1997 by The University of Chicago. All rights reserved.
 1058-4838/97/2501-0001\$03.00

Charles Pavia (New York Medical College) explained that in a mouse model, sera from patients with late Lyme disease uniformly exhibited antiborrelial activity, whereas sera from patients with early disease demonstrated significantly less activity. Richard Tilton (BBI—North American Laboratory Groups) reported that the Centers for Disease Control and Prevention criteria for standardization of interpretations of western blot testing for Lyme disease result in underdiagnosis.

Two recombinant vaccines for Lyme disease are currently undergoing human clinical trials. François Meurice (Smith-Kline Beecham) discussed the issues involved with the design of an efficacy study and the current status of one trial.

It has been recently recognized that other newly emerging or reemerging pathogens can be transmitted by *Ixodes* ticks. David Persing (Mayo Clinic) reported on coinfection with *B. burgdorferi* and *Babesia* in patients and speculated that infection by the latter species may lead to immunosuppression and a decreased immune response to Lyme disease. He further indicated that cases of human chllichiosis have been reported from the Midwest since the 1970s. Stephen Dumler (Johns Hopkins) detailed the clinicopathological features of human chllichiosis and compared them with those of Lyme disease.

Brian Fallon (Columbia University) reviewed the neuropsychiatric manifestations of Lyme disease, noting that depressive and cognitive disorders predominate and can be difficult to diagnose as Lyme disease. He reported that single photon emission CT scans are proving helpful in diagnosing CNS Lyme disease.

Claude Garon (NIH, Rocky Mountain Laboratories) described the in vitro inhibitory effects of melittin, a polypeptide found in bee venom, on *B. burgdorferi*. Sam Donta (Boston University) reported on his experiences treating clinically defined chronic Lyme disease with tetracycline.

I would like to acknowledge the efforts of all the authors in this supplement. Special thanks are extended to Karen Vanderhoof-Forschner, MBA, Frank Demarest, Martina Ziska, MD, and Esther Zollman without whose efforts this conference and supplement would not have been possible.

Acknowledgments

The Lyme Disease Foundation thanks an outstanding group of Massachusetts volunteers for their help with the preparation of the conference. This group includes Catherine Belden, Claire D'Andrea, Linda and James Hilliard, Lisa Lainer, Kathy Larkin, and Glen and Margaret Mannke. Thank you all!

Edward M. Bosler
Division of Infectious Diseases, Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York

Participants

ELISABETH ABERER
University of Graz
Graz, Austria

ALAN G. BARBOUR
University of Texas Health Science Center
San Antonio, Texas

STEPHEN W. BARTHOLD
Yale University School of Medicine
New Haven, Connecticut

JOSEPH J. BURRASCANO
Southampton Hospital
Southampton, New York

LOUIS A. CORSARO
Northern Westchester Hospital
Westchester, New York

PATRICIA K. COYLE
State University of New York, School of
Medicine
Stony Brook, New York

SAM T. DONTA
Boston University Medical Center
Boston, Massachusetts

DAVID W. DORWARD
National Institutes of Health
Rocky Mountain Laboratories Microscopy
Branch
Hamilton, Montana

STEPHEN J. DUMLER
Johns Hopkins Medical Institutions
Baltimore, Maryland

JONATHAN A. EDLOW
Mount Auburn Hospital
Cambridge, Massachusetts

BRIAN A. FALLON
Columbia University
New York State Psychiatric Institute
New York, New York

LESLEY ANN FEIN
Mountainside Hospital
Montclair, New Jersey

CLAUDE F. GARON
National Institutes of Health
Rocky Mountain Laboratories Microscopy
Branch
Hamilton, Montana

MARK S. KLEMPNER
Tufts University School of Medicine
Boston, Massachusetts

KENNETH B. LIEGNER
Northern Westchester Hospital
Westchester, New York

BENJAMIN J. LUFT
State University of New York School of
Medicine
Stony Brook, New York

LOUIS A. MAGNARELLI
Connecticut Agricultural Experiment Station
New Haven, Connecticut

MARK M. MANAK
Biotech Research Laboratories
Baltimore, Maryland

ADRIANA RODRIGUEZ MARQUES
NIAID
National Institutes of Health
Bethesda, Maryland

FRANCOIS MEURICE
SmithKline Beecham Pharmaceuticals
Collegeville, Pennsylvania

CHARLES S. PAVIA
New York Medical College
Westchester, New York

DAVID H. PERSING
Mayo Foundation
Rochester, Minnesota

MARIO T. PHILIPP
Tulane University Primate Research Center
Covington, Louisiana

JULIE A. RAWLINGS
Texas Department of Health
Austin, Texas

RONALD F. SCHELL
University of Wisconsin
Madison, Wisconsin

BRUNO L. SCHMIDT
Ludwig Boltzmann Institute
Vienna, Austria

NANCY A. SHADICK
Brigham and Women's Hospital
Boston, Massachusetts

RICHARD C. TILTON
BBI—North American Clinical Labs
New Britain, Connecticut

JANIS J. WEIS
University of Utah
Salt Lake City, Utah

JOHN M. ZAHRADNIK
Connaught Laboratories
Swiftwater, Pennsylvania

MARTINA H. ZISKA
Lyme Disease Foundation, Inc.
Hartford, Connecticut