

Editorial

Another Look at the Potential Role of *Amblyomma americanum* in the Transmission of Tick-borne Disease

Terry L. Schulze, PhD and Edward M. Bosler, PhD

Until the mid-1970s, tick-borne diseases affecting humans in the Northeast and mid-Atlantic states remained more of a medical curiosity than a public health threat. Prior to that time, the only tick-borne disease of any significance in this region was Rocky Mountain spotted fever. The principal vectors of the etiological agent, *Rickettsia rickettsii*, are the American dog tick, *Dermacentor variabilis* Say; and the lone star tick, *Amblyomma americanum* L.¹ In most of the Northeast, *A. americanum* is considered as a secondary vector, primarily because of its limited geographical distribution. *A. americanum* is known mainly for its economic importance as a serious pest of humans, livestock, and wildlife.²⁻⁵

The relative insignificance of tick-borne diseases to the entire spectrum of public health changed dramatically with the description of Lyme disease in Connecticut in 1975.⁶ Based on epidemiological evidence, the black-legged or deer tick, *Ixodes scapularis* Say (formerly *I. dammini* Spielman, Clifford, Piesman, and Corwin)⁷ was implicated as the vector of the as yet unidentified etiological agent.⁸ Early investigations centered on *I. scapularis*, and in 1982, the spirochete *Borrelia burgdorferi* was found in this tick species collected from eastern Long Island, NY.⁹ *B. burgdorferi* subsequently was isolated from *I. scapularis* from the northern Midwest and *I. pacificus* Cooley & Kohls in the West.¹⁰ In less than a decade, a complete understanding of the epidemiology of Lyme disease seemed at hand.

Early studies of Lyme disease foci in New Jersey showed that *A. americanum* temporally and spatially coexisted with *I. scapularis*.^{11,12} New Jersey and parts of southeastern New York, however, mark the northern extent of significant populations of *A. americanum*, so this tick was not considered a potential vector of Lyme disease elsewhere in the Northeast. The vector potential

of the lone star tick first became evident in 1982, when an *A. americanum* female was removed from the site where erythema migrans (EM) later developed in an 87-year-old male from Medford, NJ. This case predated the discovery of *B. burgdorferi*. In 1983, a second case of Lyme disease associated with *A. americanum* was reported when a tick was removed from the site at which EM developed in a 37-year-old female from Barnegat, NJ.¹³ Spirochetes subsequently were identified in *A. americanum* adults and nymphs collected from the place of residence of the second case and elsewhere in New Jersey.¹⁴ Although garnering some early interest in the scientific community, the potential importance of *A. americanum* in Lyme disease transmission was dismissed when early efforts to culture spirochetes from this species were unsuccessful.¹⁵

In the late 1980s, physicians from Georgia and Missouri began reporting an illness clinically indistinguishable from Lyme disease,^{16,18} but subsequent investigations failed to implicate *B. burgdorferi*. Although both *I. scapularis* and *B. burgdorferi* were present in this region, the most commonly reported tick exposure for patients was to *A. americanum*.¹⁸ Renewed interest in *A. americanum* spurred new investigations into the potential importance of this tick in Lyme disease transmission. Other than the earlier reports from New Jersey,¹⁴ spirochetes were found in *A. americanum* collected from Alabama,¹⁹ Indiana,²⁰ Iowa,²¹ Missouri,²² North Carolina,²³ Oklahoma,²⁴ and Texas.²⁵ Unsuccessful attempts to cultivate these spirochetes and the inability of *A. americanum* to transmit *B. burgdorferi* in the laboratory seemed irreconcilable.^{14,26-28} Recently, through the use of DNA sequencing, it has been postulated that this noncultivable spirochete retrieved from *A. americanum* is a new *Borrelia* sp., *B. lonestari*, which may be responsible for a new Lyme disease-like illness.²⁹ This issue is far from resolved.

As the role of *A. americanum* in the transmission of Lyme disease or a new Lyme disease-like illness is being revisited, researchers will need to address the emergence of two new rickettsial diseases simultaneously, human mono-

Address correspondence to Edward M. Bosler, PhD, Division of Infectious Diseases, Department of Medicine, State University of New York, Stony Brook, NY 11794.

cytic ehrlichiosis (HME) and human granulocytic ehrlichiosis (HGE), as serious potential threats to human health. *Ehrlichia chaffeensis*, the etiological agent of HME,^{30,31} is known to be transmitted by *A. americanum*.³² More than 400 cases of HME have been reported in the United States,³³ including nine cases from New Jersey in 1995 (T.L.S., unpublished data). Approximately 170 cases of HGE, caused by an as yet unnamed *Ehrlichia* sp., have been reported since 1994, primarily from upper midwestern and northeastern states.³³ Although *I. scapularis* is purported to be the vector of this new *Ehrlichia* sp., cases to date have been reported from outside the geographical range of *A. americanum*, so that the vector potential of this tick regarding HGE remains unclear. Interestingly, the first known outbreak of human ehrlichiosis in New Jersey occurred more than a decade ago in 1985,³⁴ in July, when both *I. scapularis* and *A. americanum* are active.

Although the emergence of the ehrlichioses is strikingly similar to that of Lyme disease nearly 2 decades earlier, a number of important differences exist. Owing to the sheer number of cases, Lyme disease has achieved a certain notoriety. As a result, public interest in other tick-borne diseases is considerable. In contrast to the emergence of Lyme disease, the recent recognition of *A. americanum* as another vector of Lyme disease or a new spirochetal illness and its role in the transmission of HME is likely to stimulate an already sensitized public to demand timely information from health agencies.

An important difference in the ability to provide information rapidly and develop strategies to deal with these emerging tick-borne disease issues is the current state of scientific knowledge. When Lyme disease was first described, little was known about the distribution, ecology, and control of *I. scapularis*. Well over a decade of research has been devoted to developing our understanding of this previously unimportant tick species. In contrast, because of its longstanding economic importance, the distribution, ecology, and control of *A. americanum* have been investigated more thoroughly, particularly in the southern United States. Much less is known about this tick along the northern extent of its geographical range. Compared to its economic importance, the role of *A. americanum* as a vector of human disease has received superficial attention. The distribution of *Borrelia* spp. and *Ehrlichia* spp. in *A. americanum* throughout its geographic range is poorly understood and should receive a high research priority.

REFERENCES

- Burgdorfer W. A review of Rocky Mountain spotted fever (tick-borne typhus), its agent, and its tick vectors in the United States. *J Med Entomol.* 1975;12:269-278.
- Cooley RA, Kohls GM. The genus *Amblyomma* (Ixodidae) in the United States. *J Parasitol.* 1944;30:77-111.
- Bishopp FC, Trembley HL. Distribution and hosts of certain North American ticks. *J Parasitol.* 1945;31:1-54.
- Clymer BC, Howell DE, Hair JA. Animal hosts of economically important ticks (Acarina) in east-central Oklahoma. *Annals of the Entomological Society of America.* 1970;63:612-614.
- Koch HG, Dunn JE. Ticks collected from small and medium-sized wildlife hosts in Leflore County, Oklahoma. *Southwestern Entomology.* 1980;5:214-221.
- Steere AC, Malawista SE, Sydman DR. Lyme arthritis. *Arthritis Rheum.* 1977;20:7-17.
- Oliver JH Jr, Owsley MR, Hutcheson HJ, et al. Conspecificity of the ticks *Ixodes scapularis* and *I. dammini* (Acar: Ixodidae). *J Med Entomol.* 1993;30:54-63.
- Spielman A, Clifford CM, Piesman J, Corwin MD. Human babesiosis on Nantucket Island, USA: a description of the vector *Ixodes dammini*, n. sp. (Acar: Ixodidae). *J Med Entomol.* 1979;15:218-234.
- Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP. Lyme disease: a tick-borne spirochosis? *Science.* 1982;216:1317-1319.
- Burgdorfer W, Lane RS, Barbour AG, Gresbrink RA, Anderson JR. The western black-legged tick, *Ixodes pacificus*: a vector of *Borrelia burgdorferi*. *Am J Trop Med Hyg.* 1985;34:925-930.
- Schulze TL, Lakat MF, Bowen GS, Parkin WE, Shisler JK. *Ixodes dammini* (Acar: Ixodidae) and associated ixodid ticks collected from white-tailed deer in New Jersey, USA: geographical distribution and relation to selected environmental and physical parameters. *J Med Entomol.* 1984a;21:741-749.
- Schulze TL, Bowen GS, Lakat MF, Parkin WE, Shisler JK. Seasonal abundance and host utilization of *Ixodes dammini* (Acar: Ixodidae) and other ixodid ticks from an endemic Lyme disease focus in New Jersey, USA. *J Med Entomol.* 1986a;23:105-109.
- Schulze TL, Bowen GS, Bosler EM, et al. *Amblyomma americanum*: a potential vector of Lyme disease in New Jersey. *Science.* 1984b;224:601-603.
- Schulze TL, Lakat MF, Parkin WE, Shisler JK, Charette DJ, Bosler EM. Comparison of rates of infection by the Lyme disease spirochete in selected populations of *Ixodes dammini* and *Amblyomma americanum* (Acar: Ixodidae). *Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene.* 1986b;263:72-78.
- Piesman J, Sinsky RJ. Ability of *Ixodes scapularis*, *Dermacentor variabilis*, and *Amblyomma americanum* (Acar: Ixodidae) to acquire, maintain, and transmit Lyme disease spirochetes (*Borrelia burgdorferi*). *J Med Entomol.* 1988;25:336-339.
- Centers for Disease Control and Prevention. Tickborne diseases—Georgia. *MMWR Morb Mortal Wkly Rep.* 1989;39:397-399.
- Centers for Disease Control and Prevention. Lyme disease surveillance—United States 1989-1990. *MMWR Morb Mortal Wkly Rep.* 1991;40:417-421.
- Masters EJ, Donnell HD, Fobbs M. Missouri Lyme disease: 1989-1992. *Journal of Spirochetal and Tick-borne Diseases.* 1992;1:12-17.
- Luckhart S, Mullen GR, Durden LA, Wright JC. *Borrelia* sp. in ticks recovered from white-tailed deer in Alabama. *J Wildl Dis.* 1992;28:449-452.
- Ryder JW, Pinger RR, Glancy T. Inability of *Ixodes cookei* and *Amblyomma americanum* nymphs to transmit *Borrelia burgdorferi*. *J Med Entomol.* 1992;29:525-530.
- Batholomew DM, Rowley WA, Novak MG, Platt KB. *Ixodes scapularis* and other ticks (Acar: Ixodidae) associated with Lyme disease in Iowa. *Journal of Vectors for Ecology.* 1995;20:1-6.
- Fier D, Reppell CS, Ben-Wen LL, et al. Evidence supporting the presence of *Borrelia burgdorferi* in Missouri. *Am J Trop Med Hyg.* 1994;51:475-482.
- Levine JF, Apperson CS, Nicholson WL. The occurrence of spirochetes in ixodid ticks in North Carolina. *Journal of Entomological Science.* 1989;24:594-602.
- Kocan AA, Mukolwe SW, Murphy GL, Barker RW, Kocan KM. Isolation of *Borrelia burgdorferi* (Spirochaetales: Spirochaetaceae) from *Ixodes scapularis* and *Dermacentor albipictus* (Acar: Ixodidae) in Oklahoma. *J Med Entomol.* 1992;29:630-633.

25. Rawlings JA, Teltow GJ. Prevalence of *Borrelia* (Spirochaetaceae) spirochetes in Texas ticks. *J Med Entomol*. 1994;31:297-301.

26. Mukolwe SW, Kocan AA, Barker RW, Kocan KM, Murphy GL. Attempted transmission of *Borrelia burgdorferi* (Spirochaetales: Spirochaetaceae) (JD-1 strain) by *Ixodes scapularis* (Acar: Ixodidae), *Dermacentor variabilis*, and *Amblyomma americanum*. *J Med Entomol*. 1992;29:673-677.

27. Maupin GO, Burkot TR, Piesman J, Tippen S, Keen M. Preliminary characterization of a spirochete isolated from *Amblyomma americanum* from southern Missouri, USA [abstract 259]. In: *Proceedings of the Fifth International Conference of Lyme Borreliosis (Arlington, Va)*. Bethesda, Md: National Institutes of Health; 1992;A44a.

28. Sanders FH, Oliver JH. Evaluation of *Ixodes scapularis*, *Amblyomma americanum*, and *Dermacentor variabilis* (Acar: Ixodidae) from Georgia as vectors of a Florida strain of the Lyme disease spirochete, *Borrelia burgdorferi*. *J Med Entomol*. 1995;32:402-406.

29. Barbour AG, Maupin GO, Teltow GJ, Carter CJ, Piesman J. Identification of uncultivable *Borrelia* species in the hard tick *Amblyomma americanum*: possible agent of a Lyme disease-like illness. *J Infect Dis*. 1996;173:403-409.

30. Anderson BE, Dawson JE, Jones DC, Wilson KH. *Ehrlichia chaffeensis*, a new species associated with human ehrlichiosis. *J Clin Microbiol*. 1991;29:2838-2842.

31. Dawson JE, Anderson BE, Fishbein DB, et al. Isolation and characterization of an *Ehrlichia* sp. from a patient diagnosed with human ehrlichiosis. *J Clin Microbiol*. 1991;29:2741-2745.

32. Anderson BE, Sims KG, Olson JG, et al. *Amblyomma americanum*: a potential vector of human ehrlichiosis. *Am J Trop Med Hyg*. 1993;49:239-244.

33. Walker DH, Dumler JS. Emergence of the ehrlichioses as human health problems. *Emerging Infectious Diseases*. 1996;2:18-29.

34. Petersen LR, Sawyer LA, Fishbein DB, et al. An outbreak of ehrlichiosis in members of an Army Reserve unit exposed to ticks. *J Infect Dis*. 1989;159:562-568.